Further processing options
available via Open Access

Influência da velocidade de rotação do rebite na microestrutura e no desempenho mecânico de juntas de compósito termofixo rebitadas por fricção: = Influence of rotational speed on...

Saved in:

Published in: Revista soldagem & inspeção 21(2016), 1, Seite 30-43
Authors and Corporations: Borba, Natascha Zocoller (Author), Blaga, Lucian-Attila (Author), Santos, Jorge F. dosf (Author), Canto, Leonardo Bresciani (Author), Amancio, Sergio (Author), Technische Universität Hamburg-Harburg (Other, Sonstige Körperschaft, 4oth), Technische Universität Hamburg-Harburg Institut für Kunststoffe und Verbundwerkstoffe (Other, Sonstige Körperschaft, 4oth)
Title: Influência da velocidade de rotação do rebite na microestrutura e no desempenho mecânico de juntas de compósito termofixo rebitadas por fricção: = Influence of rotational speed on the microstructure and mechanical performance of friction-riveted thermosetting composite joints/ Natascha Zocoller Borba, Lucian Blaga; Jorge Fernandez dos Santos, Leonardo Bresciani Canto, Sergio de Traglia Amancio-Filho
Media Type: E-Book Component Part
Language: Portuguese, English
Series: : Revista soldagem & inspeção, 21(2016), 1, Seite 30-43
, volume:21
Source: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Abstract: Facing the actual demand for efficient joining technologies for multi-materials structures, Friction Riveting was shown to be an alternative joining technology for thermoset composite profiles in civil infrastructure. This process is based on plasticizing and deforming the tip of a rotating metallic rivet within a polymeric component through frictional heating. The feasibility of friction-riveted hybrid joints of Ti-6Al-4V/glass-fiber reinforced thermoset polyester was already demonstrated in a separate work. This paper complements this study by analyzing the rivet rotational speed effect on the process temperature, joint microstructure and the local and global mechanical properties of the joint. Joints were produced using two different levels of rotational speed: 9000 rpm and 10000 rpm (the other parameters were kept constant). The results showed process temperatures (655-765 °C) up to 96% higher than the onset decomposition temperature of the polyester matrix (370 °C); this led to severe degradation of the composite in the joint area. The increase in rotational speed, and therefore in heat generation, led to a statistically insignificant increase of the rivet penetration depth and the rivet diameter widening. However, the extension of the degraded composite area increased 47% which was responsible to deteriorate in 50% the joint tensile strength (from 4.0 ± 1.2 kN to 2.0 ± 0.7 kN). Moreover, the microhardness map of the joined rivet evidenced possible phase transformations in the alloy, favoring the material hardening by increasing in rotational speed. However, no correlations could be established between the changes in hardness and the joint tensile strength since the joints majority failure by full rivet pull-out. Thereby, for the improvement of friction-riveted Ti-6Al-4V/ glass-fiber reinforced thermoset polyester joints, the optimization of rotational speed is essential. This can guarantee the formation of efficient anchored joints and wider rivet tip deformation, concomitantly with the minimizing of the extension of the matrix degradation and finally leading to better tensile strength of the joints.
Physical Description: Illustrationen, Diagramme
ISSN: 1980-6973
DOI: 10.1590/0104-9224/SI2101.04