Binary relevance for multi-label learning: an overview

1. Verfasser:
In: Frontiers of Computer Science, 12(2018), 2, S. 191 - 202
Format: E-Artikel
Sprache: Englisch
veröffentlicht: Higher Education Press
ISSN: 2095-2228
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Details: Multi-label learning deals with problems where each example is represented by a single instance while being associated with multiple class labels simultaneously. Binary relevance is arguably the most intuitive solution for learning from multi-label examples. It works by decomposing the multi-label learning task into a number of <Emphasis Type="Italic">independent</Emphasis> binary learning tasks (one per class label). In view of its potential weakness in ignoring correlations between labels, many correlation-enabling extensions to binary relevance have been proposed in the past decade. In this paper, we aim to review the state of the art of binary relevance from three perspectives. First, basic settings for multi-label learning and binary relevance solutions are briefly summarized. Second, representative strategies to provide binary relevancewith label correlation exploitation abilities are discussed. Third, some of our recent studies on binary relevance aimed at issues other than label correlation exploitation are introduced. As a conclusion, we provide suggestions on future research directions.
Beschreibung: 191-202